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High Reynolds number steady separated flow 
past a wedge of negative angle 

By J. B. KLEMPT AND ANDREAS ACRIVOS 
Department of Chemical Engineering, Stanford University 

(Received 2 July 1971 m d  in revised form 3 June 1972) 

According to classical boundary-layer theory, uniform flow past a semi-infinite 
wedge, inclined at  a negative angle i7ip to the direction of the free stream, does 
not separate unless /3 < -0.1988. It has been assumed, therefore, that, in the 
range - 0.1988 < p < 0, the flow within the boundary layer is represented by 
the Falkner-Skan equation, which, as was shown by Stewartson (1954), has 
two admissible solutions. All such solutions for p < 0 appear to be somewhat 
unsatisfactory, however, because they require an adverse pressure gradient, 
which, by becoming infinite as the corner of the wedge is approached, could lead 
to separation even if ,8 > - 0-1988. In  addition, the structure of the high Reynolds 
number flow for p < - 0.1988 has remained, to date, unresolved. 

We present here a fundamentally different solution to this classical problem 
which eliminates the singularity in the potential region by allowing the flow to 
separate at  the leading edge of the inclined surface. The associated flow field is 
then characterized by an essentially uniform free stream flowing over an inviscid 
and, to a high approximation, irrotational region of reverse flow in which the 
velocity is of O(R-4) in magnitude, R being the Reynolds number. Mixing of these 
two streams is confined to a free shear boundary layer, of O(R-4) in thickness, 
extending downstream from the leading edge and parallel to the direction of the 
undisturbed main flow. Finally, an additional boundary layer, of O(R-i)  in 
thickness, is shown to exist between the separated region and the surface of the 
wedge. Owing to the absence of a characteristic length in the problem, similar 
solutions to the appropriate equations describing the flow in each region are 
obtained and are valid for all p < 0 provided that the Reynolds number is 
sufficiently large. The analysis is then extended to higher order in R to increase 
its range of validity and to demonstrate that the proposed structure of the flow 
field remains self-consistent. Although the solution is developed only for a semi- 
infinite wedge with p < 0, it is believed that certain of its features may be of value 
in the analysis of other problems involving high Reynolds number separated flows. 

1. Introduction 
In spite of its very considerable success in dealing with laminar flow phenomena 

at large Reynolds numbers, laminar boundary-layer theory is at  present limited, 
in a strict sense, to cases where separation, or ‘flow breakaway’, does not take 
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place. In  solving for the flow past a stationary solid body for example, one first 
obtains the solution of the Euler equations on the assumption that the surface 
of the body coincides with the Y = 0 streamline. The pressure profile dpldx that 
is impressed on the boundary layer is then computed on the basis of this inviscid 
solution, and finally, the flow within the boundary layer is determined by solving 
the well-known laminar boundary-layer equations f i s t  derived by Prandtl. This 
procedure, which is described in detail in many of the standard texts on the 
subject, is straightforward and amenable either to an analytical approach for 
relatively simple body geometries or, more generally, to a numerical solution. 

Fundamental difficulties arise, however, whenever the surface streamline 
(Y = 0) detaches itself from the surface of the body, a phenomenon often referred 
to as separation. As is well-known, this seems to occur whenever the pressure 
gradient dpldx is even mildly positive, since, under the action of both an adverse 
pressure gradient and the frictional resistance of the stationary surface, it is 
impossible for the fluid within the boundary layer to continue along the contour 
of the solid wall. 

Prom a theoretical point of view, the complications introduced by the presence 
of separation result primarily from the fact that the location of the Y = 0 stream- 
line beyond its point of detachment from the surface is a priori unknown and 
must be determined through consideration of the region of reverse flow down- 
stream of this point of breakaway. Since this streamline is displaced an order one 
distance from the surface in most problems of interest, fluid in the free stream 
then flows past an effective body whose shape may differ significantly from that 
of the solid object. As a result, the pressure gradient along the Y = 0 streamline 
will not be the same as that obtained in the absence of separation, even upstream 
of the point of detachment, thereby affecting the boundary-layer calculations. 
It is clear, therefore, that the structure of the motion within the region of reverse 
flow plays a crucial role, through its effect on the position of the Y = 0 stream- 
line, in determining the flow pattern both in the inviscid region and inside the 
boundary layer, i.e. throughout the entire flow field. 

Owing to the inherent complexity of the subject, relatively little attention 
has been directed to this aspect of viscous flow theory despite its importance to 
our understanding of a wide class of flow phenomena. As a result, to date, no 
self-consistent asymptotic theory, analogous to the one already available for 
unseparated flow, has been presented that accurately describes high Reynolds 
number laminar flow in which separation occurs. One of the main factors that 
has hindered the development of such a theory is the sparseness of relevant 
experimental information. Because of the instability of the motion when reverse 
flow occurs, experiments cannot be performed under steady-state conditions 
beyond a certain range of Reynolds number R, which is generally not too large, 
and thus little is known with any degree of certainty about the basic structure of 
steady separated flows at  high R, especially downstream of the point of boundary- 
layer detachment. 

We shall consider here one system which will be shown to fall into the above 
category. This is the flow past a wedge of negative angle 6j.P) which, assuming 
that separation does not occur (see figure I ) ,  has been described, on the basis of 
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FIGURE 1. Structure of the flow for ,!3 < 0 assuming that separation does not occur. 

classical boundary-layer theory, by a family of similar solutions first developed 
by Palkner & Skan (Rosenhead 1963). As was first shown by Hartree (1937), 
solutions to the appropriate laminar boundary-layer equations, or, in this case, 
the Falkner-Skan equation, exist without flow reversal even for p < 0, provided 
that p > -0.1988. When p = -0.1988, the skin friction is found to vanish 
everywhere along the surface 13 = inp, whereas, when p < -0.1988, the solu- 
tions lead to velocity profiles which indicate a reverse flow within a portion of 
the boundary layer. Since in the latter case, however, the velocity near the outer 
edge of the boundary layer exceeds that of the adjacent main stream, the solution 
for p < - 0.1988 cannot be accepted on physical grounds. 

The Falkner-Skan equation was also investigated in some detail by Stewartson 
(1954), who showed that, for eachpin the range - 0.1988 < /3 < 0, there exists an 
additional solution to that obtained by Hartree (1937) in which backflow occurs 
and for which the associated displacement thickness increases without limit as 
p -+ 0-. Thus, if one adopts the classical point of view according to which, as 
shown in figure 1, the flow consists of an inviscid main stream plus a conventional 
boundary layer of thickness of O(R-3) along the surface of the wedge, one con- 
cludes that there exists a unique solution for each p 2 0, two ostensibly acceptable 
solutions for each /? in the range -0.1988 < p <  0 and no acceptable solution 
for p < - 0.1988. To be sure, these conclusions result from an analysis of the 
similar solutions to the boundary-layer equations; however, since the physical 
system lacks a characteristic length, the solution to these equations, if it  exists 
and is unique, must be of a similar form. 

Upon closer examination of these results, however, it would appear that none 
of the similar boundary-layer solutions for p < 0 are entirely satisfactory. 
Specifically, since the associated velocity at  the edge of the boundary layer is 
proportional to rm, where r measures the distance from the corner of the wedge 
and m = p/(2 -p),  these solutions require, for m < 0, an infinite deceleration at  
the edge of the boundary layer (which corresponds to an infinite adverse pressure 
gradient) just downstream of the singular point, at r = 0. Hence, in view of the 
propensity of boundary layers to separate in the presence of even a mild decelera- 
tion of the external flow, it is not entirely clear that it is permissible to assume 
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that the boundary layer remains attached to the wall for this particular case 
when the adverse gradient is initially of infinite magnitude. In fact, one might 
equally well suppose that the boundary layer would become detached at the 
origin, r = 0, for all p < 0, thereby removing the singularity from the potential- 
flow solution. This, we recall, would be in line with other instances of high 
Reynolds number flow, for example, flow past an airfoil with a sharp trailing 
edge, where it appears that the effect of viscosity acting within the boundary 
layer is to establish precisely that value of the circulation which either removes or 
at least renders milder the singularity that would otherwise exist in the solution 
for the main stream (Batchelor 1967, p. 437). 

At any rate, even if one were prepared to accept the family of Falkner-Skan 
solutions for /3 > - 0.1988, it is evident that there exists a need for extending 
the analysis to the case p < - 0.1988, whose flow structure has, up to now, re- 
mained unresolved. 

It is the purpose of the present paper, then, to present a fundamentally 
different solution to this classical problem which, in contrast to that obtained 
from conventional boundary-layer theory, applies for all /3 < 0 and for which the 
external potential flow is devoid of singularities. As sketched in figure 2,  the 
flow field will be found to consist of four distinct regions: I, a conventional 
irrotational region of flow past an effective body of thickness of O(R-4); 11, 
a boundary layer separating the main stream from an essentially stagnant fluid; 
111, an inviscid and, to a high approximation, irrotational region of reverse 
flow occupying the space &/3 < 0 < 0 in which the velocity is of O(R-9) in 
magnitude; IV, a boundary layer of O(R-i) in thickness along the surface of the 
wedge, 0 = &r/3. 

Although, strictly speaking, the solution to be developed will apply only to 
the particular case of flow past a wedge with /3 < 0, it is believed that certain 
of its features may be sufficiently general to enter into the analysis of other 
problems involving steady reverse flows at high Reynolds numbers. 

2. Basic structure of the flow 
We consider here the uniform flow of an incompressible fluid along a flat plate 

whose surface suddently becomes inclined at an angle +r/3 away from the free 
stream. In order to analyse the same physical situation as that described by 
the Falkner-Skan solution for negative wedge angles, the fluid is assumed to 
slip freely along the surface of the pIate upstream of the point of inclination. 
(Since this particular boundary condition is of rather limited physical interest, 
more realistic conditions will be discussed in $4.) The variables are non- 
dimensionalized through the appropriate use of the uniform free-stream velocity 
U and a length scale I, which may be chosen arbitrarily since no characteristic 
length appears in the problem. In this manner, the Reynolds number R is defined 
by R = Ul/v,  where v is the kinematic viscosity. 

For the reasons mentioned in the introduction, our analysis begins with the 
assertion that separation occurs at  the leading edge (r = 0) of the inclined 
surface. In turn, since the resulting solution should evidently be independent of 
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the choice of the characteristic length I ,  we require that, a t  large R, the Y = 0 
streamline dividing the irrotational main stream from the separated region should 
lie along a straight line originating at  r = 0. In fact, it is clear upon further 
reflexion that this streamline must be located along the 0 = 0 axis, i.e. parallel 
to the direction of the uniform free stream. Otherwise, according to potential 
theory, the main-stream velocity would become infinite either far downstream 
or at  the leading edge, depending on whether the angle of inclination of the 
Y = 0 streamline was positive or negative. 

This important conclusion regarding the location of the Y = 0 streamline 
allows us next to deduce the basic structure of the flow which is shown in figure 2. 
To a first approximation, the free stream I remains undisturbed downstream of 
separation and since there is no pressure gradient along the Y = 0 streamline, 
fluid in the separated region I11 remains at rest. These two regions are separated 
by a boundary layer I1 of O(R-4) in thickness which is located along the 8 = 0 
axis. This flow structure is then similar to that of a uniform jet discharging into 
a quiescent stream. Of course, region I11 is not truly stagnant; fluid being en- 
trained into the boundary layer from below must come from downstream, hence 
a reverse flow is generated in I11 with velocity of O(R-4). However, since the 
flow jn I11 is inviscid, it will not be possible to satisfy the no-slip condition at  
8 = &~/3, and therefore an additional boundary layer IV must appear along the 
inclined surface. 

From this brief description, it is already apparent that the solutions in the 
various regions will be strongly interdependent ; hence the analysis must proceed 
in a definite order. With this in mind, we begin with the free shear boundary 
layer 11. Since, to first order, the velocity in I is uniform and that in I11 is 
negligibly small, the solution in I1 corresponds to that presented by Lessen 
(1949) and by Lock (1951). Thus the stream function is given by 

yI,(r, 6 )  = ( W % ( r ) ,  7 = (RrP (8 -0J, (2.1) 
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where fz(r) satisfies the familiar Blasius equation with the boundary conditions 
fz(0) = fi( - co) - 0 and fi(m) = 1. The cylindrical polar co-ordinates ( r ,  8) are 
as indicated in figure 2, and Os(r; R) represents the position of the Y = 0 stream- 
line. As will be seen, Os(r;R) is of O(R-8) to a first approximation; moreover, 
since it must be independent of the choice of the characteristic length I, 

Os(r; R) = a,(Rr)-B, (2.2) 

where ctl is a constant to be determined. 
From Lock's (1951) solution we have that 

YII(r,q)-+- -yl(r/R)*, y1 = 1.2385. 
?l+- m 

(2.3) 

Consequently, an O(R-4) flow is induced in the inviscid separated region 111, 
which being, in general, rotational can be determined from the solution of 

V2Y1,, = -@W111), Y111(r, 0) = -Y&/R)4 YIII(r9 4@) = 0, (2.4) 

with w denoting the vorticity in 111, which is a function only of Y,,,. In view 
of the absence of a natural characteristic length, we seek a solution of the form 

Y111(r, 6) = (r/R)*f3(8), (2 .5 )  

where the r dependence is dictated by the boundary condition in (2.4). Moreover, 
(2.5) is consistent with (2.4) only if w is of the form AY& but since this would 
imply that w becomes infinite as O -+ &rp, we suppose, subject to a posteriori 
verification, that A = 0. To this order then, the separated region is irrotational. 
With this simplification, the solution to (2.4) can readily be obtained, and 
yields forf3(0) 

The velocity in the radial direction is then 

(2.6) 

which clearly verifies the presence of backflow in the separated region. To 
illustrate the structure of this flow, we have plotted in figure 3 the streamlines in 
I11 for /3 = -Q. Of course, the entrainment requirements of the free shear 
boundary layer are independent of p, and thus, as p is increased towards zero, 
the velocity of the reverse flow will correspondingly increase in magnitude. In 
fact, u, becomes proportional to p-' as ,8+ 0, thereby limiting the range of 
validity of the present analysis when p becomes small. We shall discuss this 
point in more detail after completing our derivation of the first-order solutions 
in each region. 

Since, according to (2.7)) the radial velocity in I11 does not vanish as 8 -+ QTP, 
it  is apparent that a viscous boundary layer IV in which the radial velocity is of 
O[(Rr)-*] must develop along the inclined surface at  8 = +np. Applying the 
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FIGURE 3. Streamline pattern in separated region 111 for ,h' = - Q. 

usual techniques of boundary-layer analysis (Rosenhead 1963), we find that the 
proper similar form for YIv is given by 

and thus is independent of p. This last boundary condition arises from the re- 
quirement that the radial velocity in IV as g + 00 must match with the limit of 
(2.7) as 8 --f +nP. Since fi(o0) <lo, the O[(Rr)-t] flow in IV accelerates toward the 
leading edge while, at the same time, the boundary layer becomes thinner. As 
is evident from (2.8), this viscous layer is of O(r*R-*) in thickness for P = O(1). 

Next, in considering the form of (2.9) as <-+ 00, we can easily show that, in 
the limit, (2.10) 

where, from the integration of (2.9), A, = 1-2585. It is interesting to note that, 
as indicated by (2.10), fZ(5) decays like 5-5 for large c, and that, consequently, 
the vorticity in the domain of overlap between I11 and IV is given by 
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Since any vorticity in I11 must be matched to the adjacent boundary layers, 
we would thus expect that the first contribution to the vorticity in 111 will be 
of O(R-4Y:&), thereby justifying our earlier assertion that, to the indicated 
order of approximation, w in (2.4) is indeed negligible for R 9 1. To determine the 
origin of this vorticity, we consider the flow in 111 for a large but fixed Reynolds 
number. By choosing a typical streamline in the interior of I11 a t  some order-one 
distance from the leading edge and following it downstream against the direc- 
tion of flow, we find that its distance from the surface of the inclined plate in- 
creases in proportion to rf as r + CO. On the other hand, since the thickness of IV 
is of O(R-irQ), it is clear that the streamline in question will emerge from region IV 
when r is of O(R) in magnitude. Thus, the flow in 111 enters the region from the 
boundary layer below a t  an O(R)  distance downstream and with a certain 
amount of vorticity, which, however, is very small. 

To complete our discussion of the basic features of the flow, we shall now 
examine the first correction to the uniform flow in region I. This will also involve 
consideration of the position of the Y = 0 streamline. We begin by noting that 
the value of the stream function a t  6 = 0 is obtained through matching with 
the boundary-layer solution in 11, which, in the limit as y -+ 00, is given by 

(2.11) 

where, from Lock’s (1951) solution, y2  = 0-5289 and 0, is defined by ( 2 . 2 ) .  Thus, 
letting Y I ( r ,  6) = r sin 6+ Y f ) ( r ,  O), we have that 

VZY$l) = 0, 

Y1l(r,?)) --+ (r/R)g(71-Y2) = r ( 6 - 6 s ) - ? 2 ( r / R ) f 9  
7-m 

Yi l ) ( r ,  0) = - (a, + y 2 )  (r/R)S, 

Yi l ) ( r ,  n) = 0, r-lY?)(r, 8)  + o as r --f co, 

which, when solved for Y$l) (r ,  8),  yields 

Y I ( r ,  6 )  = rs in6+ (r/R)$f,(B), j‘,(B) = - (a,+y,)sin+(n--O). (2.12) 

I n  seeking to determine a,, which is related to the position of the Y = 0 
streamline, we consider the pressure balance across the free shear boundary 
layer. Since both the pressure in I11 and the pressure drop across I1 are of 
O[(Rr)-I], the O[(Rr)-g] pressure term in I must vanish as 6 + 0,  thereby re- 
quiring that 83?$l)/%’= Oat r = 0. But clearly, from (2.12), thisconditionissatisfied 
regardless of the value of a,, and consequently, this constant cannot be obtained 
from the first-order pressure balance across 11. In  dealing with this question, 
Ting (1959) proposed a method for calculating a, based on a higher order analysis 
of the boundary-layer equations, but unfortunately, as shown by Klemp & 
Acrivos (19723), this procedure will not, in fact, allow a1 to be determined 
uniquely since, in the higher order analysis, higher order terms must also be 
added to (2.2). For this reason, if the free stream is truly semi-infinite, a, remains 
indeterminate. On the other hand, if a boundary is imposed on the free stream 
a t  any arbitrarily large distance from 11, then the O(R-*) term in OS(y; R )  can 
be calculated, although it may no longer have the form of (2.2). Furthermore, 
it has been shown by Klemp (1971) that, when a free-slip wall is placed parallel 
to the uniform flow a t  an unspecified distance from the free shear boundary 
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layer, the requirement that aYf)/a8 = 0 at r = 0 leads to an integral equation 
for 8, whose solution is given by ( 2 . 2 )  with a1 = - yz. This corresponds to 
Yil)(r, 0 )  = 0, and also means that the vertical flow through I1 will be just offset 
in this case by a downward displacement of the dividing streamline. Thus, if 
a symmetry condition or a free-slip boundary a t  infinity is imposed on the free 
stream, a1 is determined uniquely and the 0(R-4) correction to the uniform flow 
in I vanishes identically. 

As mentioned earlier, if ,4 becomes sufficiently small, the range of validity of 
this analysis, in terms of Rr, is somewhat restricted. To determine the extent of 
this limitation, we note that, in order for the solution to be valid, the thickness of 
boundary layers I1 and IV must be much less than that of region 111. From (2.1) 
the thickness of I1 is of O(R-ar4) while in IV the boundary-layer thickness, as 
indicated by (2.8), becomes of O(R-)rSp*) as /3 -+ 0. Thus, if both boundary 
layers are to be thin in comparison with region 111, whose thickness is of O(r,8), 
we must require that /3 O[(Rr)-f]  for the above analysis to remain valid. It 
is then evident that, for a given R, the solution as given above applies only 
beyond a certain distance downstream of the leading edge which increases as p 
approaches zero. 

To summarize then, the absence of a characteristic length in this system has 
made it possible to obtain similar solutions for the fluid motion throughout the 
flow field and to derive expressions for the stream functions in regions I-IV, 
givenby (2.10), (2.1), (2.5) and (2.8) respectively. describe 
a solution in which, beneath the free stream, an inviscid separated region forms 
which, to this order in the analysis, is irrotational and is characterized by a reverse 
flow of O[(Rr)-B] in magnitude, induced by the free shear boundary layer located 
between I and 111. Since the inviscid motion in I11 cannot satisfy the no-slip 
requirement at 8 = +np, a second boundary layer, IV, appears along the inclined 
surface of the wedge and in this an O[(Rr)-t] reverse flow accelerates toward 
the leading edge. In  addition, decay of vorticity near the outer edge of IV 
indicates that the vorticity in I11 will be of O(R-fr-8).  This solution is then valid 
throughout that region of the flow field where the condition ,8B (Rr)-g is 
satisfied. 

3. Higher order analysis 
Having examined the basic features of the motion, we now seek to extend the 

validity 3f the solutions, in terms of Rr, by considering higher order approxima- 
tions to the flow in the various regions. In  this higher order analysis, the solution 
must continue to remain independent of the choice of the length scale I ;  thus, in 
constructing the appropriate expansions we are guided by the fact that each 
member of the series must retain the self-similar form of the corresponding first- 
order term. Furthermore, since the h t -order  expressions for the stream func- 
tions in I11 and IV differ in magnitude by O[(Rr)-i],  we must initially proceed 
in powers of (Rr)-i in order to satisfy the matching requirements between 
adjacent regions. Of course, the expansions will become more complicated when 
eigensolutions begin to appear in the higher order terms, which, in the present 
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case, occurs first in the O(l3-l) term of the expansion for the free shear boundary- 
layer solution (Klemp & Acrivos 1972a). The appearance of this eigensolution 
then makes it necessary to add a logarithmic term to the expansion in I1 which, 
through the matching, will produce corresponding logarithmic terms in expansion 
for the other regions. Consequently, the appropriate expressions for the stream 
function in I-IV become 

YP,(r, 0) = rsin0+ (r/R)${f,,(@+ (Rr)-~[fi2(0)1~1 (Rr)+fi3(8)]+ ...), (3.1) 

YII(~ ,  7)  = (r/R)'{f21(7) f (Rr)-' [ f22(T)  In (Rr) +f23(ljl)l .-.>, (3.2) 

(3.3) 
YIII(~ ,  d l  = (r/R)'{f31(@ f (Rr)-ff32(8) + (Rr)-* [f33(@ In +f34(@1 + .-.>, 

'rIdr, 5) = (r/R)' {(Rr)-t cl(p)f41(c) + c2(p)f42(c) + 
X [C3(P)f43(5)1n (Rr)  +c4(p)f44(5)1-l- (3.4) 

in which fll(0), fil(7), f31(6) and f41(6) represent the first-order solutions derived 
in $ 2 .  The functions C,(p), with Cl(p) = [ - +yl cosec &rp]3, have been included 
in (3.4) so as to render thef4,(LJ independent of p. Also, in extending this analysis 
to higher order, additional corrections to the position of the Y = 0 streamline 
must be considered, hence the expansion for OS(r; R) becomes 

OS(r; R) = (Rr)-i {al + (Rr)-i [a2 In (Rr) +a3] + . . .>. (3.5) 

Note that no terms of O(R-2) appear in (3.1), (3.2) and (3.5) owing to the absence 
of an O(R4)  flow in 111. 

The eigensolution, mentioned above, is represented in (3.2) by ,fZz(y), which 
corresponds to an eigenfunction of the appropriate boundary-layer equation 
forf2,(7). It is given (Klemp & Acrivos 1972a) by 

f2zfr) = ~ ~ r f k ~ ( 7 ) / f L ~ ( o )  - 111 fklW = 0.5873, (3.6) 

where K is a constant. In  order to determine its effect on the solution and the 
limitations it imposes, we shall begin the higher order analysis with the boundary- 
layer region 11, where substitution of (3.2) into the radial component of the 
Navier-Stokes equations and use of (3.6) yields,the following ordinary differential 
equation for f23(ljl) 

The boundary conditions for the above as 71 -+ 2 00 derive from the requirement 
thatfi3(7) must match, respectively, with the radial component of the O[(Rr)-*] 
velocity in I and 111. Thus, evaluating (2.7) as 8 -+ 0 and recalling thatfil(0) = 0, 
we have that 

'f;; +fZlfk3  +.f;lfkt = 2Kfkl* (3.7) 

f23(0) =fk3(00) = 0, f;13( - 00) = 47, cot ~ T P .  (3.8) 

By integrating (3.7) once from co to 7, we then obtain 

fi3 + 4f21fL3 = WL1- 11, 
which clearly indicates that, if fb3(7) is to satisfy the required boundary con- 
dition at  7 + - 00, K must be given by 

K = t r?cot  (3.9) 
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Notice that K vanishes a sp  -+ - 2. This agrees with the result found by Klemp & 
Acrivos (19723) that in the boundary layer formed by the mixing of the two 
parallel streams the f i s t  eigenbolution does not introduce a logarithmic term in 
the analysis if one of the streams is semi-infinite. 

Prom the above, we see then that the eigenfunction f z2(q)  is uniquely de- 
termined and that it plays an important role in the solution, because, by appearing 
as a logarithmic term in the expansion (3.2), it introduces a non-homogeneous 
term in (3.7) which  allow^$^^(^) to assume the proper form as 7 -+ - co. However, 
the fact that f Z 2 ( ~ )  satisfies the homogeneous portion of (3.7) precludes the 
uniqueness of f23(7) because an unknown constant appears in its solution that 
cannot be determined without examining the details of the flow in the vicinity 
of the leading edge. This indeterminancy will then be transferred to the ex- 
pressions for f13(0), f3,(8), $,,(@ and a3 through the matching of (3.2) to the 
stream-function expansions in neighbouring regions. Consequently, in what 
follows, we shall terminate our analysis after obtaining the logarithmic terms 
in (3.1)-(3.5). 

Turning next to the free-stream region, we can quickly conclude, by matching 
the pressure across the free shear boundary layer, that the functionf,,(B) in (3.1) 
must vanish. This is because, as was mentioned in Q 2, the pressure in I11 is of 
O[(Rr)-11 and thus, since the pressure drop across I1 is of the same magnitude, 
any O[(Rr)-lln (Rr)]  pressure appearing in I must vanish as 8 -+ 0. This, in turn, 
requires thatfi,(O) = 0, and thus the problem forfl,(8) becomes 

which has only a trivial solution. This result also allows us to calculate a, by 
requiring that the form of (3.2) as 7 + 00, when expressed in outer variables 
r and 8, should contain no logarithmic terms to the present order of the analysis. 
Thus, the logarithmic term in (2.11) arising from (3.5) must cancel with that 
containing f,,(co), which, on account of (3.6), yields 

= K[1- 1/';1(0)] = - 0.7028K. (3.10) 

In  considering higher order solutions for the inviscid separated region, we are 
aided by the fact that, as discussed in the previous section, the vorhicity in I11 
is of O(R-4Y&; thus, to the present order of approximation, the flow remains 
irrotational. With this in mind, we can proceed to construct solutions for fS2(O) 
and f 33(0) using Laplace's equation with the appropriate boundary conditions 
arrived at  through the matching to the adjacent boundary layers. Turning lirst 
to the free shear boundary layer, we note that there isno term of O(R-h+*) in (3.2), 
so that, evaluating (3.6) as 7 +-m and matching (3.2) and (2.3) in the area of 
overlap, we obtain for the boundary conditions at 8 = 0 

f32(O) = O ,  f33(O) == -K. 

Similarly we see that in IV there is no term of O[R-l ln  (Rr)],  so that matching 
(3.3) as 0 -+ &r/3 t o  (3.4) as [ --f co, and using (2.10), yields 

f&mp> = A,[ - +yl cosec )n8]*, fg3(&$) = 0, A, = 1.2585. 
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With these boundary conditions, substitution of (3.3) into Laplace’s equation 
results in the following simple expressions forf3,(8) andf3,(8) : 

(3.11) 

f33W = KW/@- 11. (3.12) 

Since A, > 0 and K < 0,  equations (3.11) and (3.12) indicate that the second term 
in (3.3) corresponds to a reverse flow which is being entrained into IV, while the 
third term is a result of an O(I2-l) detrainment from 11. As was mentioned earlier, 
since the expression for f34(8) will contain an unknown constant, we shall ter- 
minate the analysis for the flow in I11 at this point. 

In order to satisfy the no-slip requirement a t  8 = 4n-p in the higher order 
analysis, additional corrections to the flow in IV must appear to compensate 
for the higher order terms derived above for region 111. The appropriate equations 
for these terms in I V  are then obtained in the usual manner by substituting (3.4) 
into the radial component of the momentum equation, thereby yielding 

(3.13) 

Also, by suitably choosing C,(p) and C3(p), we obtain for the boundary conditions 

(3.14) 
of (3.13) 

Thus,f,,(C) andf,,(g) are clearly independent of p ,  and can be computed from the 
integration of (3.13) subject to (3.14). To obtain the p dependence of the terms 
in (3.4), the radial velocity in IV as 6 --f co must be matched to that in I11 as 
8 -+ grip, which, on account of (3.11) and (3.12), leads to 

1 4f:4 +f41 f% - 5[1-f& f i 2 1  = 0, 

4f2+f4if13-fkf43- 6[1 -fiifd = O .  

f4n(0) = f;,(o) = 0, f;,(..) = - 1 (n = 293). 

c2(p) = - $Al cot &Tp, C3@) = 2K/7T/3Cl(/3). (3.15) 

Finally, in considering the form of the equations in (3.13) as < + co, we find 
that each similar function has the same asymptotic form as the corresponding 
first-order function, f41(<), i.e. 

(3.16) 

where, from the numerical integration of (3.13), A, = 0.1955 and A, = 0.1340. 
From (3.16), it  is apparent that, as was the case with the first-order solution, 
both f & ( g )  and f i 3 ( < )  decay algebraically like <-5 when C becomes large. This 
confirms that, in fact, the leading term for the vorticity in region I11 will be of 
O(R-4Yy5) and that higher order approximations to the vorticity in I11 will 
then match these higher order terms in the boundary layer IV. 

4. Discussion 
By taking into account higher order corrections to the basic solution presented 

in S 2, we have thus extended the accuracy of the analysis to O[R-lIn (Rr)]. 
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However, i t  is perhaps of more importance that, through the derivation of these 
higher order terms, we have shown that the proposed solution continues to be 
self-consistent, in that it represents the first few terms of an apparently well- 
posed asymptotic expansion. According to this solution, the flow is characterized 
by a free stream that detaches from the inclined surface a t  the leading edge and 
proceeds downstream essentially undisturbed, flowing over a separated region 
of reverse flow in which the velocity is of O[(Br)-t] in magnitude. Since, in the 
free-stream region, the singularity has now been removed from the inviscid 
solution, it appears that this description of the flow structure is more satisfying 
than that discussed by Hartree (1937) and by Stewartson (1954). 

To be sure, as was mentioned previously, the free-slip boundary condition 
upstream of the leading edge of the inclined surface is somewhat artificial. It 
has been incorporated into the present analysis, however, in order to maintain 
an exact analogy between this problem and that described by the Falkner-Skan 
equation for /3 < 0. It is important to note, though, that our present solution 
can also be applied with relatively minor modifications to situations which are of 
greater physical interest. Consider first the problem of uniform entry of a stream 
directly above the leading edge of the wedge surface, i.e. U(r,$r) = 1. In  this 
case, we suppose that the flow in the main stream will separate immediately for 
the same reasons as those outlined in $ 5  1 and 2 and that it will continue down- 
stream undisturbed to a first approximation. Thus, the flow field will again be 
depicted by figure 2 and the first-order solution in each region will be unchanged. 
Only higher order terms will be altered owing to vorticity, of O(R-4) in magnitude, 
which arises in the main stream because of the uniform entry boundary condition 
(Van Dyke 1971). 

Another interesting case is that in which the horizontal boundary upstream 
of the leading edge consists of a no-slip surface of finite length. Here, we again 
suppose that, in spite of the presence of a Blasius boundary layer upstream of the 
corner, the flow will separate from the inclined surface a t  the leading edge to 
avoid a singularity in the potential solution. However, because of the existence 
now of a physical length, the solution will not have a self-similar form in the 
vicinity of the corner, where, on account of the boundary layer forming upstream, 
the free shear boundary layer I1 will have a finite thickness. Nevertheless, since 
the free-shear layer is known to approach, asymptotically far downstream, its 
self-similar structure irrespective of the shape of its profile a t  r = 0, we should 
also expect our similarity solution, described previously, to apply in all four 
regions provided that r > 1. 

In  all the cases considered above, we have consistently assumed that separa- 
tion will occur at  r = 0 which will then lead to the flow pattern given by our 
solution. Of course, this is not the only possibility. Specifically, if the angle of 
inclination of the surface changes sufficiently smoothly from 8 = 0 to 6' = &1~,8, 

rather than abruptly as in figures 2 and 3, the adverse pressure gradient may not 
be strong enough to cause the boundary layer to separate if - 0.1988 < ,8 < 0. 
In  this case, the flow pattern far downstream would then be described by the 
classical analysis based on the Falkner-Skan equation. On the other hand, if the 
adverse pressure gradient is large enough to cause separation, the angle of 
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inclination of the dividing streamline, Bs, will again be essentially zero far down- 
stream (as depicted in figure 2 )  since, for Bs > 0 ,  infinite velocities would develop 
far downstream, while, for 6, < 0, the pressure distribution in the region of 
inviscid reverse flow would be inconsistent with the required flow pattern. There- 
fore, the solution for r & 1 will correspond either to that derived in § § 2  and 3 
or to that given by the Falkner-Skan analysis depending on whether or not the 
boundary layer becomes detached from the surface at r = 0. Finally, for 
/3 < - 0.1988, we again note that only the present solution applies far downstream 
since, as was remarked earlier, the solutions to the Falkner-Skan equation are 
unacceptable on physical grounds. 

Of course, if the separated region is finite in extent, closed streamlines along 
which the velocity is of order one in magnitude may form in this region. The 
structure of the separated flow would then be analogous to that which occurs 
when a uniform stream flows over a finite cavity and would consist of an inviscid 
core with uniform 0(1) vorticity plus an associated boundary layer along the 
sides. Apparently then, for motions of this type, the semi-inhite solution, as 
presented above, would not apply except perhaps in the vicinity of the leading 
edge, where the O( 1) velocity of the recirculating fluid vanishes. However, this 
matter deservesfurther study since it is not clear to what extent the O( 1) vorticity 
in the core would be convected into the neighbourhood of the leading edge and 
thereby affect the analysis, as presented earlier, for region I11 of figure 2.  
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